
Python Control Flow:
Loop & Iteration
Introduction to Computer Programming (Python)
Week 4

Vivatsathorn Thitasirivit
Rev. 1.0 (Course 1/2023)
https://vtneil.com

Learning Strategy
Learning and Practicing

Introduction to Computer Programming 2

You want to learn new things and practice using
them to build up muscle memory.

Even you studied a lot, but if you don’t practice a
lot, you are just consuming weigh protein without
working out.

“Bloating with knowledge but doesn’t know how
to use it.”

Learn

Practice

Learn

Practice

Learn

Practice

Learn

Learn

Learn

Practice

Practice

Practice

Low grade meat:
Fat and protein separatedA5 Wagyu

Computer
Review Program Flow: Loop

Introduction to Computer Programming 3

Loop

A loop is an iterative statement where the
program does some processes many
times which may be the same or different
processes.

A loop might be based on enumeration or
decision.

Process 1

Process A

Condition

Process 2

Python
Conditional Loop

Introduction to Computer Programming 4

A conditional loop is a loop that checks for
conditions every cycle of operations.

If the condition is true, then the loop continues until
the condition is false.

In Python, and many other languages, a while loop
is used in this context.

It is read as “While something, do something”

while condition:
do something here
...

while keyword

Python
Conditional Loop

Introduction to Computer Programming 5

Usually, to make the while loop effective, it must not
run forever.

To start, you set the initial condition, then check,
then update the condition in the loop. If you do it
correctly, the loop should not be a forever loop.

For example, a program that up-counts from 1 to 10.

The program should print integer from 1 to 10.

i = 1

while i <= 10:
print(i)
i += 1

Initial condition
Condition check

Condition update:

In this case, incrementing

Python
Conditional Loop

Introduction to Computer Programming 6

Example,

A program that asks user the password. The program
should print ”CORRECT” if user inputs the correct
password and “INCORRECT” if not.

You can use any statements you have learned in the
past chapters, for example, if-elif-else, print, etc…

password = 'BobaTea'

user_input = input()

while user_input != password:
print('INCORRECT')
user_input = input()

print('CORRECT')

Initial condition Condition check

Condition update

Python
Conditional Loop

Introduction to Computer Programming 7

Example,

A program that sums integer from 1 to n while n is an
integer from user input.

result = 0
i = 1

n = int(input('Enter an integer: '))

while i <= n:
result += i
i += 1

print(result)

result = 0

n = int(input('Enter an integer: '))

while n > 0:
result += n
n -= 1

print(result)

Solution 1 Solution 2

Python
Conditional Loop

Introduction to Computer Programming 8

Exercise 1

Write a program that asks user for 5 integers.

Then, add those integers to an empty list.

The list should have those 5 integers.

Print the list.

The output should look like this:
[5, 80, 3, 2, 4]

Python
Conditional Loop

Introduction to Computer Programming 9

Exercise 2

Write a function that takes a list of numbers
as a parameter.

The function should square every element,
then return the new list.

Example:

Input inp = [1, 3, 4, 5]
Output f(inp) = [1, 9, 16, 25]

Use the given template.
Knowledge: list indexing and list length.

This asks the user how many numbers should be input
For example, 5, then the next 5 lines you input the numbers
Then, the list x should contain those numbers.
x = [int(input()) for i in range(int(input()))]

def f(inp):
ret = []

do something

return ret

print('First:', x)
print('Then: ', f(x))

Python
For Loop

Introduction to Computer Programming 10

Python’s “for loop” is very versatile. It can be used
to iterate through a collection of elements, e.g., a
list, set, dictionary, etc.

Sometimes a range(…) function is used instead of
original while loop setups.

The “for loop” will iterate through every element in
the specified collection.

for something in collection:
do something here
...

for keyword

Introduction to Computer Programming 11

For example, you want to print every element in a
list beautifully.

One way, you can use string joining to do it, which
this method is more Pythonic.

One way, you can loop through each element and
print them one by one. This is a more standard
method than the above one.

lst = ['Word1', 'Pepsi', 'Fish', 'Chess’]

for x in lst:
x now represents each element in lst
print(x)

Python
For Loop

Introduction to Computer Programming 12

Sometimes, you want to iterate through a list of
integers (counting): 0, 1, 2, 3, … , n

In Python, there is an easy way for that.

You can use range(…) generator function.

for i in range(10):
print(i)

Python
For Loop

But if you want to start from 1? Or from any
number? The research work is on you!

You can also use range for iterating a list with index,
but this practice is NOT recommended in Python
because there is a better way to do it.

lst = ['Word1', 'Pepsi', 'Fish', 'Chess']

for i in range(len(lst)):
print(i, lst[i])

Python
For Loop

Introduction to Computer Programming 13

Exercise 3

Write a program that calculate the factorial of
n using “for loop.”

A program should prompt user for integer n.

A program should also check for negative
integers. Print “INVALID” if input is negative.

Recall that 0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
…

Python
For Loop

Introduction to Computer Programming 14

Exercise 4

Write a function that takes a list of strings as a parameter.

The function should return a new list of strings without empty element

Example:

Input x = ["Joe", "Sarah", "Mike", "Jess", "", "Matt", "", "Greg"]

Output f(x) = ["Joe", "Sarah", "Mike", "Jess", "Matt", "Greg"]

You should be able to begin writing functions on your own right now.

Python
Control Statement in a Loop

Introduction to Computer Programming 15

There are 3 types of control statements in Python, which are used
to control the flow of the program, especially in a loop.

1. Break breaks from current loop now
2. Continue skips current loop and go to next iteration
3. Pass means do nothing (just a placeholder statement)

while condition:
do something here
...

while keyword

Python
Control Statement: Break

Introduction to Computer Programming 16

Break Examples

A function that searches the list for an element k.

If the element exists, it should return True, else False.

Key Idea: we search the list from the beginning to the end. If the
element is found, you can stop the loop there and not wasting time
on other elements because you reached the objective.

def search(lst, k):
found = False

for elem in lst:
if elem == k:

found = True
break

return found

Python
Control Statement: Continue

Introduction to Computer Programming 17

Continue Examples

A function that sums all integers that is not divisible by 5.

You can think it in 2 ways:

1. If the integer is not divisible by 5, then adds the number.

2. If the integer is divisible by 5, skips this iteration and go next.

The first one is straightforward, but if you have many conditions, it
will be so many nested statements when you have a lot of codes.

The second one is more readable and understandable.

def add5(lst):
sums = 0

for elem in lst:
if elem % 5 == 0:

continue
sums += elem

return sums

Python
Nested Loops

Introduction to Computer Programming 18

A nested loop is a loop that is within a loop. There
can be as many levels of loop as you want.

You can put any types of loop within a loop. For
example, while within for loop and vice versa.

You can try this program and see what it does.

Try writing each case:
When i = 0: j = 0, 1, 2
When i = 1: j = 0, 1, 2

So, the print statement run 6 times.

n = 2
m = 3

for i in range(n):
for j in range(m):

print(i, j)

Python
Nested Loops

Introduction to Computer Programming 19

Exercise 5

Write a program that prints a square of size n x n on
the terminal screen with asterisk (star).

For example, when n = 6, it should show

Try using print’s optional arguments:

print('*', end='')

Python
Nested Loops

Introduction to Computer Programming 20

DO THE PRACTICE PROBLEMS!

