Data Analysis 1

Week 6 (16:00, 24/11/2021)

Vivatsathorn Thitasirivit

Student. Faculty of Engineering, Chulalongkorn University.

Week 6 Outlines

Data Analysis in MATLAB

Assignments

Week 6 Data Sample

MATLAB Programming: File (*Week 5*)

Reading a matrix/an array from a file

In MATLAB, you can open a file to read, write, or append text/number to it. The format of an array in a text form can vary. One of the most used format is Comma-delimited value (CSV) format. For example,

 $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$

can be written in text format as:

1,2,3 4,5,6 7,8,9 ther formats as well e

There are other formats as well, e.g., tabdelimited, character-delimited, etc. Reading a matrix from delimited file

```
M = readmatrix('filename.csv');
```

Writing a matrix to a CSV-formatted file

writematrix(M, 'filename.csv');

MATLAB also supports reading/writing a matrix from/to Excel spreadsheet file (.xls, .xlsx, .xlsm)

A CSV format will be autogenerated. If you wish to use other formats, consider the following command:

writematrix(M, 'filename.csv', 'Delimiter', 'tab');

MATLAB Programming: Correlation Coefficient

Calculating corr. coef.

In MATLAB, use

R = corrcoef(A, B) or corrcoef(A)

when A is the first random variable and B is the second random variable.

By term *random variable* means observed or measured variables.

For example, generate a data:

>> C = [1,2,3,4;2,3,2,4;3,4,1,4;4,5,0,3]

REMINDER

As you have studied correlation coefficient, we will get over what it is and start with how to do it in MATLAB. We see that,

C =				
	1	2	3	4
	2	3	2	4
	3	4	1	4
	4	5	0	3

If we use command corrcoef(C), a weird matrix output is generated as the following.

COR =			
1.0000	1.0000	-1.0000	-0.7746
1.0000	1.0000	-1.0000	-0.7746
-1.0000	-1.0000	1.0000	0.7746
-0.7746	-0.7746	0.7746	1.0000

MATLAB Programming: Correlation Coefficient

Understanding the matrix

COR =			
1.0000	1.0000	-1.0000	-0.7746
1.0000	1.0000	-1.0000	-0.7746
-1.0000	-1.0000	1.0000	0.7746
-0.7746	-0.7746	0.7746	1.0000

The output matrix is a matrix of "correlation of each pair".

1.0000 in the diagonal means the correlation of column pair (1,1), (2,2), (3,3),and (4,4)

for other column coordinates such as (1,4) *as well as* (4,1) with value of -0.7746 means the correlation of data column 1 and 4

แล้วถ้าอยากรู้แค่ (1,2), (1,3), (1,4) ต้องดูแค่ส่วนไหน?

3

2 1

0

4

4

3

3 4

5

C =

2

3

DUE: 6 DECEMBER 2021

Data Analysis Assignment 1

Given a CSV file:

dat_wk6.csv

Column 1 is an X-axis, i.e., constraining data and Col. 2–9 are Y-axes data (sampling data). Therefore, least required matching data for plotting must be: $(1,2), (1,3), \ldots, (1,9)$

Do the following:

- Generate scatter plots of all data 1. ()
- 2. Generate lines connecting the scatters ()
- 3. $(\star \star)$ Generate linear fitting for each data
- Calculate correlation coefficients (★) 4.
- $(\star \star \star)$ Generate a 5.1. variance-covariance and 5.2. correlation matrix 5.
- Generate plots and calculate correlation coefficients for other pairs, e.g. (Bonus) 6. $(2,3), (2,4), \ldots, (8,9),$ etc. (just wonder for yourselves)

ทำนายว่าข้อมูลแต่ละคู่หลัก (Column pair) อาจเป็นข้อมูลที่วัดมาเป็นอะไรได้บ้าง เช่น กราฟลักษณะนี้ อาจเป็นความสูงเทียบกับเวลา

Submit in only one .*m* file with all required information output able to be generated in it.