Data Analysis 1

Week 4 (16:00, 27/10/2021)

Vivatsathorn Thitasirivit

Student. Faculty of Engineering, Chulalongkorn University.

Week 4 Outlines

Second order of average measurement

• Covariance & Correlation

MATLAB

- Basic Matrices Operations
- Elemental Operations
- Figures
- Next week: Functions

Assignments

Data Samples

Covariance

$$Cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

Programmathically: Covariance Sign

Correlation Coefficient

$$r = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = \frac{\Sigma(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\Sigma(x_i - \bar{x})^2}\sqrt{\Sigma(y_i - \bar{y})^2}}$$

Stats How To: Correlation Coefficient Sign

MATLAB for Engineer & Scientist

A Matrix Laboratory for Matrix-based Calculations

It is very high-performance + fast language for technical computing, visualization, and analysis.

The data do not have to be dimensioned like an array (like in C, except for Python, of course)

Wide mathematical library

Python is a general-purpose programming language, whereas MATLAB is a technical computing language. The performance between two is significantly different when come to Big Data. Python will have its advantage in machine-learning-based analysis and computing.

	PLOTS	APPS			
New New Script Live Script	New Open FILE	📮 Find Files 📴 Compare	Import Data	Save Workspace VA	₩ New Variab ₩ Open Varial ₩ Clear Works RIABLE
🔶 🌩 🗗 🎦 🎘	<mark> </mark> + C: +	Users 🕨 neil4	Docum	ents 🕨 MA	TLAB
Name 🔺				ft; >>	
Details			~		

MATLAB Graphical Interface

Toolbar

Addition & Subtraction	>> 1-2+3	Symbol	Operation	Example
	2	+	Addition	1+2
Multiplication & Division	>> 1/2*3	_	Subtraction	2-5
	ans = 1.5000	*	Multiplication	6*7
Power	>> 2.^3	/	Division	1/3
	ans = 8	• ^	Power of	3.^2
	>> 2 $(1/2)$	exp()	Exponential	exp(3)
	ans = 1 4142	sqrt()	Square Root	sqrt(3)
	1.4142			

Constant pi	>> pi
	ans =
	3.1416
Constant e	>> exp(1)
	ans =
	2.7183
Square root of 2	>> sqrt(2)
_	ans =
	1.4142

Variables	>> x=3
	x =
	3
	>> x*8
	x =
	24
Overriding Variables	>> x=7
	or
	>> x=x+5

Error Handling

Hierarchy of Arithmetic Operations

Level	Operation		
First	FirstElements inside all parentheses are evaluated first, starting from the innermost parentheses, then workin inside out.		
Second	All exponents are evaluated from left to right		
Third	All multiplications and divisions are evaluated from left to right. Content between symbols will act as only one element, e.g., 2/5*3 is equivalent to (2/5)*3.		
Fourth	Fourth All additions and subtractions are evaluated from left to right.		

(...)

.^

* /

+ -

Hierarchy of Arithmetic Operations		Level	Operation
$\frac{1}{2+3^2} + \left(\frac{4}{7} * \frac{5}{6}\right)^3$	>> 1/(2+3.^2)+(4/7*5/6).^3 ans = 0.1989	First	Elements inside all parentheses are evaluated first, starting from the innermost parentheses, then working inside out.
Number Decimal Format		Second	All exponents are evaluated from left to right
>> format short	3.1416		All multiplications and divisions are evaluated from
>> format long	3.141592653589793	Third	left to right. Content between symbols will act as only one element, e.g., 2/5*3 is equivalent to (2/5)*3.
Use semicoron to inde output			All additions and subtractions
$>> x=3 \longrightarrow >> x=3$	3;	Fourth	are evaluated from left to right.

3

Managing Workspace

Functions

Symbol	Operation	Symbol	Operation	Symbol	Operation
cos(x)	Cosine	sec(x)	Secant	abs(x)	Absolute
sin(x)	Sine	csc(x)	Cosecant	sign(x)	Sign
tan(x)	Tangent	cot(x)	Cotangent	max(x)	Maximum
acos(x)	Arc Cosine	asec(x)	Arc Secant	min(x)	Minimum
asin(x)	Arc Sine	acsc(x)	Arc Cosecant	ceil(x)	Ceiling
atan(x)	Arc Tangent	acot(x)	Arc Cotangent	floor(x)	Floor
exp(x)	Exponential	pi	Pi	round(x)	Round to nearest integer
sqrt(x)	Square Root	i, j	Imaginary unit	rem(x)	Remainder after division
log(x)	Natural Logarithm	Inf	The infinity	angle(x)	Phase angle of Trig. Function
log10(x)	Base 10 Logarithm	NaN	Not a number	conj(x)	Complex conjugate

Simple plot

Interval and Step

Syntax for x variable in interval [*a*,*b*] with step *s* in between:

Example

>> plot(x,y)

Labeling Plot

```
>> x = 0:pi/100:2*pi;
```

- >> y = sin(x);
- >> plot(x,y)
- >> xlabel('0 \leq x \leq 2\pi')
- >> ylabel('sin(x)')
- >> title('An example plot of Sine function')

Multiplot & Legends

```
>> x = 0:pi/100:2*pi;
>> y1 = sin(x);
>> y2 = 2*cos(x);
>> y3 = cos(x);
>> plot(x,y1,'-',x,y2,'--',x,y3,':')
>> xlabel('0 \leq x \leq 2\pi')
>> ylabel('Trig. Function')
>> title('An example plot of Trig. function')
>> legend('sin(x)','2cos(x)','cos(x)')
```


Chart Style

Axis Range

>> axis([x1,x2,y1,y2])

Line Colors & Styles

>> plot(x,y,'style1','style2',...)

Symbol	Color	Symbol	Line Style	Symbol	Marker
r	Red	-	Solid	+	Plus sign
g	Green		Dashed	0	Circle
b	Blue	:	Dotted	*	Asterisk
С	Cyan		Dash-dot (Phantom)	•	Point
m	Magenta	none	No line	Х	Cross
У	Yellow			S	Square
k	Black			d	Diamond

Chart Style

Axis Range

>> axis([x1,x2,y1,y2])

Line Colors & Styles

>> plot(x,y,'style1','style2',...)

Symbol	Color	Symbol	Line Style	Symbol	Marker
r	Red	-	Solid	+	Plus sign
g	Green		Dashed	0	Circle
b	Blue	:	Dotted	*	Asterisk
С	Cyan		Dash-dot (Phantom)	•	Point
m	Magenta	none	No line	Х	Cross
У	Yellow			S	Square
k	Black			d	Diamond

MATLAB Matrices

Generating a Vector: Vector is a 1xN or Mx1 dimensional matrix.

Row vector >> $v = [1 \ 4 \ 7 \ 10 \ 13]$ or >> v = [1, 4, 7, 10, 13]Column vector >> w = [1; 4; 7; 10; 13]Transpose >> u = v'

Value of Element(s)

>> a=v(1)	>> d=v(1,end
-----------	--------------

- >> b=v(2) >> e=v(1:end)
- >> c=v(1:3) >> f=v(:)

MATLAB Matrices

Generating a Matrix: Usual Matrix dimension is M row x N column.

Matrix generation column >> A=[1 2 3;4 5 6;7 8 9] or >> A=[1,2,3;4,5,6;7,8,9] 3 row 2 Matrix element indexing: Use A(row, col) 5 $\mathbf{A} =$ 6 4 row >> A(2,3) 8 9_ 7 ans = 6 col 3 Matrix element overriding

>> A(2,3)=0 A = 1 2 3 4 5 0 7 8 9

MATLAB Matrices

Generating a Matrix: Usual Matrix dimension is M row x N column.

Dimension

```
>> size(A) or >> [m,n] = size(A)
```

Colon Operator

>> x=0:0.1:5 Means this vector x has 51 elements (50 subintervals) ranging from 0 to 5 with 0.1 interval: (0,0.1,0.2,0.3,...,4.9,5)

Linear Spacing

>> y=linspace(0,2*pi,101) Means this vector y has 101 elements (100 subintervals) from 0 to 2π

Colon Operator in Matrix for selecting range of element in a Matrix

- >> A(m:n,k:j) Means selecting from row m to n and column k to j.
 Leave m and n blank for selecting ALL rows >> A(:,k:j)
 Leave k and j blank for selecting ALL columns >> A(m:n,:)
- >> A(:) Means iterating elements in **A** into a single column vector

 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$