Name	Date	
------	------	--

Experiment #0: Density of a Geometric Shape and Linear Graph

Objective To practice measuring, recording, analyzing, and reporting results

from measuring density of a geometric shape

Tools Ruler, Vernier caliper, micrometer, weight scale

<u>Instruction</u> 1. Measure mass of the object

- 2. Measure Lengths of the object
- 3. Calculate volume of the object using appropriate formula
- 4. Calculate density of the object using $\rho = \frac{m}{V}$
- 5. Report the result with acceptable significant figures and uncertainty

Part 1: Density of a Geometric Shape

Tools used: Ruler

Experimental results

Object 1:	Unknown material tubing				
	Mass:	29.594 ± 0.001	(g	?

No.	Internal Diameter (r), cm	External Diameter (R), cm	Height (h), cm	
1	3.0 ±	1.8 ±	2.2 ±	
2	2.9 ±	1.9 ±	2.2 ±	
3	3.1 ±	1.7 ±	2.2 ±	
4	2.9 ±	1.7 ±	2.2 ±	
5	3.0 ±	1.9 ±	2.2 ±	
x				

Object 1 Volume Calculation

 $V = \underline{\hspace{1cm}}$

Object 1 Density Calculation

 $\rho =$

Object 2: Metal Washer

Mass: ____10.9 ± 0.1____ (____g___)

Tools used: Vernier caliper for r, R and Micrometer for h

No.	Internal Diameter (r), mm	External Diameter (R), mm	Height (h), mm	
1	10.70 ±	28.02 ±	2.68 ±	
2	10.72 ±	28.12 ±	2.63 ±	
3	10.74 ±	28.08 ±	2.68 ±	
4	10.68 ±	28.14 ±	2.67 ±	
5	10.74 ±	28.12 ±	2.68 ±	
x				

Object 2 Volume Calculation

V = (

Object 2 Density Calculation

 $\rho =$

Part 2: Linear Graph

I. Write a linear graph of variable position $x\ (m)$ as vertical axis and time $t\ (s)$ as horizontal axis. Use included graph paper.

t(s)	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0
x(m)	38	78	94	113	141	170	190	230

Use 10% uncertainty for variable position \boldsymbol{x}

II. Calculate the slope of this graph with uncertainty and unit. For uncertainty use maximum and minimum slope technique