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Disclaimers

* This project focuses on experimentations on a real quantum device compared
to a simulator.

e Methods proposed in this project are plausible and practical to run on a real
quantum device.

* The author has suggested many possibilities to address and solve the stated
problems in further research.




The Sequence Alignment Problem (Pairwise)

* Aims to align 2 sequence with most similarity.

* Global and Local Alignment AACGG
* How similar is these two sequences? TGCGT
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The Sequence Alignment Problem (Pairwise)

* Aims to align 2 sequence with most similarity.

* Global and Local Alignment AACGG
* How similar is these two sequences? TGCGT
AA--CGG- AACGG

**  Qr ** Or ../
--TGCG-T TGCGT
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Classical Sequence Alignment

* Dynamic Programming

* 0(n?) in both time and space (score matrix + backtracking)

F(i—1,5—1)+ S(A;, By)
F(i,7) =max{ F(i,j—1)+d
F(i—1,7)+d

S( b) C1 ifa:b,
a =
’ —cy if a #b.
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Classical Sequence Alignment

* Dynamic Programming

* 0(n®) in both time and space (score matrix)

T|G|C|G|T
0 2|4 |6 8|10
A | 2B
A | -4
C | -6
G | -8
G |-10
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Classical Sequence Alignment

* Sequential Sweeping

* 2 nested for loops

* Can it be parallelized?
* What if the array is too large?
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Classical Algorithms Parallelization

* Analyzing Cell's Dependencies

(0, 0) (0, ) (0, 0)

Nt

.

(i, 0) (4 J) (4, 0)
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Classical Algorithms Parallelization

* Naive Parallelization Method
* Doing each anti-diagonal wavefront in parallel
* Generally, slow access pattern for CPU

* Very slow in very large array that can't fit in CPU's cache
(no spatial localization)

* Large threading overhead ratio.

[terations
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Classical Algorithms Parallelization

* More thoughtful way: (0, 0) (0, §
Split array into blocks conceptually 5 5
* Normal sweeping within each block
(4, 0) (4 J)
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Classical Algorithms Parallelization

* Now, you can parallelize a wavefront (0, 0) . - (0, 5)
in “blocks.” |

* Reduce threading overhead ratio

* Can fix localization problem

* Still taking very large memory

* How can we improve further?
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Classical Algorithms Parallelization

 Offloading and Lazy loading
* Load blocks currently in use at a time

* Drawback: disk access is typically slower.

Very Large Arr: "
ery Large Array Block Decomposition
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Classical Algorithms Parallelization

* Block access referencing done in
index array and lookup function.

R
Index Q}O
(0, 0)
(0, 1)
(0, 2)
(1, 0)

(m-1,n-1)

Block Index Array
(Unrolled)
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Classical Algorithms Parallelization

Measured CPU Time in milliseconds - String input length
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Basics of Quantum Computing

Qubits .
/ | \ o, 100% be O

Either O l
somewhere
o 1

In between
Classical bit Qubit representation
(Bloch sphere)

-1y 100% be 1

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment 16



Basics of Quantum Computing

Superposition =2 Parallelism & Searching

n qubits = Superposition of 2" states.

e.g., 000000, 000001, ..., 111110, 111111

\ J
Y

6 qubits = Superposition of 64 (2°) states.
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Basics of Quantum Computing

Decoherence

Probability

ledl® %

| ) CY’ > ‘ ) m—p Measurement/
]_ 1811” %

Measured qubit

Quantum State
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Basics of Quantum Computing

Quantum Entanglement
“Spooky action at a distance”
- Albert Einstein

e Simplification
e Any changes on gl affects g2

< instantly regardless of
distance between them.
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Basics of Quantum Computing

Quantum Entanglement: Example

Bell State

GHZ State

Bell basis |[edit]

Four specific two-qubit states with the maximal value of
Bell states and they form a maximally entangled basis, K

B+ = %uom ® (05 +[1)4 ® |1)5) ()

®7) = —([0)4 ® [0)5 — [1)4 @ [1)5) @)

V2

o) = %uom ® [1)5 +[1)4 ®0)5) @)

) = %uou ® )5 — 1)1 ®0)5) @)

Wikipedia
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Definition |edit]
The GHZ state is an entangled quantum state for 3 qubits and its state is
1000) + |111)

vz

Generalization [edit]

IGHZ) =

The generalized GHZ state is an entangled quantum state of M > 2 subsystems. If each system has dimen
to (Cd, then the total Hilbert space of an M -partite system is Hiot = (Cd)@’M. This GHZ state is also callg
a tensor product is

d—1
|GHZ)=%;z’)®---®li):%(|O)®---®|U)+---+|d—1)®---®d—l)).

In the case of each of the subsystems being two-dimensional, that is for a collection of M qubits, it reads
‘0>®M + |1>®M

IGHZ) =
V2

Wikipedia
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Basics of Quantum Computing

Quantum Algorithm Example

* Grover's Algorithm for searching database.

e Focuses on unordered search Ocacle ’Dg((usa
* Query only O(+/N) times. geleilonhagiuptendetoi. ¥ omiaralon
b0 oy {e}H ga Gl ava il o

| N
« Oracle: mark correct answer 0> ‘__ 1 U, ut I Ho{H] :
by applying negative phase. 10) 1M+ g ldng G |
* Diffuser: amplify correct answer oy -4 : Rl gial py
. . '

back to original phase. 1=> ; 4 p—£ :
M 2 e el i o TEE o J
\ J

Qefcw\‘ O(/W) ‘H\MCS

https://cnot.io
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Basics of Quantum Computing

Quantum Algorithm Example

 Quantum Fourier Transform & Quantum version of DFT

Ix.& T 4 - - | J
|xu-> T ] - -HHS
Iy — - - HI— = = = Resanr R wrpu == -

12> —HHSF- - - {Rwe H R e — - -

https://cnot.io
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Basics of Quantum Computing

Some Basic Quantum Gates

Single qubit gates

1
Hadamard — % (} —1)
. . a- 0 1
Pauli-X (Bit flip) — X — °x =11 0
. . 1 O
Pauli-Z (Phase flip) Z 0z (0 1

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment
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Basics of Quantum Computing

Some Basic Quantum Gates

Two qubit gates

Controlled-NOT (CNOT, CX)

S

SWAP ‘

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment

-

-

o = O O

o O = O
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Quantum Algorithms for Sequence Alignment

* Hamming Edit Distance (Possible, Implementable)
* Levenshtein Edit Distance (Theoretical with qRAM)
* Needleman-Wunsch (Theoretical with gRAM)

* Smith-Waterman (Theoretical with gRAM)

* Cosine Similarity (Possible)

Graph Edit Distance (Theoretical)

Pattern Matching Approximation with QFT (Quantum DFT/FFT)
BLAST Database Search Matching (Never proven as of now)

Knuth-Morris-Pratt string search algorithm (Never proven as of now)

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment
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Quantum Algorithms for Sequence Alignment

 Hamming Edit Distance (Possible, Implementable)

* Levenshtein Edit Distance (Theoretical with qRAM)

* Needleman-Wunsch (Theoretical with gRAM)

* Smith-Waterman (Theoretical with gRAM)

* Cosine Similarity (Possible)

Graph Edit Distance (Theoretical)

Pattern Matching Approximation with QFT (Quantum DFT/FFT)

BLAST Database Search Matching (Never proven as of now)

Knuth-Morris-Pratt string search algorithm (Never proven as of now)
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Quantum Algorithms for Sequence Alignment

* DNA Sequence string is represented by {A, T, C, G}"

* Sequence Encoding
* Minimal Encoding (2 bits): {00,01,10, 11}
* One-hot Encoding (4 bits): {0001,0010,0100, 1000}

* #Qubits needed if:

* 2 Input quantum registers
* 1 output quantum register
* 1 output classical register (for measurement)

. — 3 X Nencode length X NString length

« Example: 127-qubit system supports 42-bit string (21 characters) maximum.

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment
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Quantum Algorithms for Sequence Alignment

e Concept: “Pairwise Comparison”

In classical term, we would use XOR operation.
In quantum system, we can use Controlled-NOT (CNOT, CX).

Naive approach turns |b) — |a & b)

a) : l
Input qubits are not conserved! ‘b> :

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment 28



Quantum Algorithms for Sequence Alignment

* We can add an output quantum register.

 CNOT is its own inverse, so we can "sandwich” operations.
a) : J\ l
b) : —D N

la © b): i
* Now, input qubits can conserve (if they are not entangled).

L/

* If input qubits are entangled, the output qubit will also be entangled with
input qubits. Measurement will collapse the superposition.

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment
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Quantum Algorithms for Sequence Alignment

 Method 1: Direct pairwise

comparison using XOR

o
|seq_a) : — Initialize I | |
|seq_a) : — Initialize [ I
| 1 |
|seq-b) : — Initialize —— XOR [ T | |
| | |seq_b) : — Initialize ——B l o
| |
: 2 |
jout.t) : | | A lout_t) : : D :
cout_t : ,;"1 . cout-t : —

(a) Top-level block

(b) Decomposed XOR

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment
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Quantum Algorithms for Sequence Alignment

* Method 1: Direct pairwise comparison using XOR

seq_a), : R :0 :
| I
seqa), : 4 E |
¢ Example: ' | itialize | |
. . seq_a), 2 |2 |
2-character (4-bit) input o ] |
seq-a)q 1 — ; ,
| |
seq_b), 9 :4 :
. . ‘(J o1 I |
* Potential |mprovements: et | Initialize :6 XOR 4bits | |
. . seqb), ! !
* Implement quantum adder circuit et 3 ] |
« QFT Adder e | |
OUL _ - 58 | ’—|
* Ripple Carry Adder ot | s
. out_t), : 19 ' /]
 Adder using QPE fout-t), | | A
out t), : 1:0 : m
lout _t) | | LA
|out_t)., : 1:1 : %

cout._t : 7=
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Quantum Algorithms for Sequence Alignment

* Method 2: Direct pairwise comparison using Swap Test

s1) : ¥
52) :
lout) : —H H—

* This utilizes quantum properties of putting a control qubit in a superposition.
* This causes qubits entanglement.

* How do we determine the output?
* |If sl equals s2, the output measurement is always 0.
* Else, the output measurement is 0 for 50% and 1 for 50%.
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Quantum Algorithms for Sequence Alignment

* Method 2: Direct pairwise comparison using Swap Test

* Example:
1-character (2-bit) input

* What if we treated it
as a signal?
* Time-domain Comparison
* Frequency-domain Comparison

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment

seq_a)g
seq_a),
seq_b), :
seq-b), :
lout_t),
lout_t), :

cout_t :

0 I 0 |
o | itialize | | 4 |
0 ' 2 '
| Initialize | | 5| SWAP Test 2bits |
S -4
e e
fIE
P
(a) Top-level block
0 | |
"1 | Initialize | | :
0 | |
1 | Initialize : |[
Sy
" H [——e— H [ A
; | | J
/2 0 1

(b) Decomposed Swap Test
33



Quantum Algorithms for Sequence Alignment

* Addition to Method 2: Compare in a Frequency Domain
* We can apply QFT and QFT-! on both input quantum registers.

* The state after initialization can be described as:

(H]0))®" @ QFT |s1) ® QFT |s5)

0 o 0 0 |
|seq-a), : — | |
| > 1 Iﬂitialize | 1 QFT 1 ) IQFT I
seq-a), : —
| |
|seq-b), : 9 [0 2 0 |
seq_b), : — Initialize | 1| QFT |3| SWAP Test 2bits |; | [QFT |
seq-b), : —
| 4 |
out-To —{H T
I — H———{ A
cout_f : = \[; %J/

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment
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Quantum Algorithms for Sequence Alignment

* Can we combine both domain in 1 circuit?
* Yes, but it would be impractical: large circuit, potential noise, rigorous post-processing.
» After the Swap Test and measurement, qubits are not reusable.
* Must initialize qubits again.*

0 ! 0 ! lo lo 0 0 !
lseqa)g: — | | e — . 1 — |
1 | Initialize 1 1 | Initialize | |1 | QFT |4 1| IQFT
|seq_a); 1 — : ' ' ' L e |
R | ) | | | ‘ |
|seq-b), : 2 " 2 /2 /9 12 9 u,
seqd), : ! Initialize | | 3 | SWAP Test 2 bits | 11 | Initialize | 1, | QFT |4 | IQFT |
seq-b), : — | | | | o L |
. SWAP Test 2 bits
. | 4 L[ /] | | - |
|outt), : | Eb —HH—AA | | |
|Out_t>l . } @_ _@ f 1/74| T f f
jout ) ' | | S [y
70 | | | | == =] Il |
lout-f), : : : —{H}— i A
cout._t = ; .
cout_f : =
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Quantum Algorithms for Sequence Alignment

* Further improvements:
* |. Swap Test on every permutation of qubits.

e From n to n?

S1 {0, 1,....n — 1} X 89 {0, lL,....n — 1}

* Il. Using QPE for frequency domain

s \7£¥— E;

L ! E;

W .

* llIl. Maybe go for a qudit (d-level quantum system)? ,
I

o 0 b Ec

v - e . -

d—1 d—1 .
B s . ' 9 _ a 3 0 2
|w> o Z Ci |Z> j Z; ”CZH : Non-linear oscillator
1=

—0
Z 10.1063/1.4954283
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A quantum computer

* There are many types of quantum computers!

* Analog Quantum Computer
* Initializing a quantum state
* Control the Hamiltonian to evolve the state directly
* E.g., quantum annealing [D-Wavel| , adiabatic computation, quantum simulation

* Digital Quantum Computer
It is “gate-based” with universal set of gates
* Typically, is a two-level quantum system.
* Digital outcomes by measurement
 Similar to classical computing.

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment
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d Quantum harmonic oscillator

A quantum computer D
é“s \ ;, / L C=—=
* There are also many qubit technologies used! 3, —/ 12 5=
- + 1)
N ; /o)
* Current technologies in NISQ era w2 0 2 m

o Superconducting qubits Superconducting phase, ¢

« Transmon charge, nonlinear b Transmon
* Trapped ion
E
=
. . =
» Candidate technologies after NISQ 2
c
* Photonic w
* Silicon-based 0 Wi x
. Topological Superconducting phase, ¢

Superconducting Qubits: Current State of Play (annualreviews.org)
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A quantum computer

* This is IBM's 127 qubit quantum computer on which the circuit was run.

* Courtesy: IBM Quantum

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment
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A quantum computer

* Superconducting 5-qubit quantum processor (IBM).

____________ Bus Resonator

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment

Qubit Diagram

Courtesy: IBM Quantum
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A quantum computer

* Superconducting 127-qubit quantum processor lattice (IBM).
?-0-0-9-?-0-0-0-?-0-0-9-?-0

?-e-é-e-?-e-é-e-?-e-e-e-?-e-
$ $ $ ' 1
0-0-0-0-0-0-¢-0-0-0-0-0-0-0-0
) ) o o
O=0=0=0=0=0=0=0=0=0=0=0=0=0 COU rtesy: IBM Quantum
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A quantum computer: IBM Roadmap

2019 @ 2020 @ 2021 © 2022 2023 2024 2025 2026+

Run guantum circuits Demaonsirate and Run quantum Bring dynamie cireuits to Enhancing applications Improwve accuracy of Scale quantum applica- Increase accuracy and
00x faster Qiskit Runtime to unlock with alastic computing Qiskit Runtime with tions with circuit knitting spead of quantum

on the [BM cloud prototype quantum programs 1
algorithms and with Qiskit Runtime mare computations and parallelization of scalable error mitigation toolbox controlling workflows with integration
applications Qiskit Runtime Qiskit Runtime of ermor correction into

Chskit Husntinme

Model Prototype quantum software applications | Quantum software applications
Developers
Machine learning | Matural science | Optimization

Algorith Quantum algarithm and application modules
Developers
Maching learning | Matural science | Optimization

Kernel o a

Developers

Dynamic cncuits a Threaded primitives :"'é) Erred suppréssion and mitigation Erraf correéction
System Falcon (] Hummingbird @) Eagle (] Osprey [ ] Condor @ Flamingo Kookaburra Scalinglo
Madularity 27 qubits &5 qubits 127 qubits 433 qubits 1,121 qubits 1,386+ qubits 4,158+ qubits 10K-100K qubits
with classical
and gquantum
‘ y! communication
Heron ) Crossbill
133 qubits xp 408 qubits

S

v N



Experimentation Setup

Translate + Compile
* Used IBM Qiskit framework (Python) to generate and transpile circuits.

* Experiment Setups:
* Control: Running circuits on IBM’s matrix product state (MPS) simulator

* Independent: Running circuits on 127-qubit IBM Eagle r3 (ibm brisbane)
e Trials on 8-bit, 16-bit, 32-bit, 40-bit controlled encoded sequences.

* Circuits Tested:
* Time-domain comparison with XOR (t dom XOR)
* Time-domain comparison with Swap Test (t dom SWAP)
* Frequency-domain comparison with Swap Test (f dom SWAP)
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Initial Results: 8 bits

Sequences TTGC and TGCT are the test sample.

simulator_mps

ibm_brisbane

1.0 i
g ) 0.6
X 3 0.4 1
£ g 0.5 A
_g ic 0.2 1
- ! |
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Ts] o n (=] LN Ts] o i (=] Ta]
o 0075
< o
0.04
5 3 0.050
c
£ £ 0.025 0.02
<
* 0.000 I T T T T T 0.00 r T T — T T T
o o o o o o o o o o (=] o
2 g8 2 8 B 28 2 8 B
o 0.015
< o004
= 3 0.010
wn =
c
£ 20.02 0.005
s =
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— — o o~ — — o~ (o]

Binary Representation

Binary Representation

Figure 31: 8-bit String Running Results Comparison
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Its

16 b

Sequences ATGCTTGC and TGCCTGCA are the test sample.

Initial Results

ibm_brisbane
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simulator_m
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Figure 32: 16-bit String Running Results Comparison
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Initial Results: 32 bits

Sequences ATGCTTGCGGGGGGGG and TGCCTGCACGCGCGCA are the test sample.

simulator_mps

1.0 4
- 4
O U
25
g c 05
o T
T =
)
0.0- T T T T T T T T
(] wn o [Ta] (] el (=] [Ta] (=]
=] =] — — ~ ~ m m <
1e9
a 0.004 A
q .
=
3
V£ 0.002
£ 2
S =
“ 0.000 T T T T T T T T
e \n Q n S 1 e n Q
o (=] — — ~ o~ m m <
1e9
a 0.002
g o
S T
3
V£ g.001
£ 3
= =
* 0.000 I T T T T T T T T
o [Ta] o [Ta} o Te] o [Ta} o
o] S — — ~N Iy m ) <
Binary Representation le9
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Figure 33: 32-bit String Running Results Comparison
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Initial Results: 40 bits

Sequences ATGCTTGCGGGGGGGGACAG and TGCCTGCACGCGCGCATCAG are the test sample.

simulator_mps

g ) 1.0
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Figure 34: 40-bit String Running Results Comparison
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Circuit Optimization

 Circuit & Transpilation Optimization:
* Remove barrier separating each section entirely (except before measurement).
* Increase optimization flag from 1 (default) to 3 (maximum).

e Sampler Primitive Improvement:
* Increase sampling shot counts from 1,024 shots to 10,000 shots.

Vivatsathorn Thitasirivit - Quantum Approaches to Sequence Alignment
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Noise Analysis

SNR vs. Bits for different domains

8 —8— tdom XOR
—— t dom SWAP
—&— f dom SWAP
6 ]
Z Agignal
o noise
A=)
o
2 24
(V)]
0 .
_2 -
_l
1IO 115 2'0 2'5 3|0 3l5 4l0

Bits
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Optimized Results: 8 bits

simulator_mps
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Figure 37: Quasiprobability Distribution Comparison (8 bits)
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Optimized Results: 32 bits
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Figure 39: Quasiprobability Distribution Comparison (32 bits)
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Optimized Results: 40 bits
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Figure 40: Quasiprobability Distribution Comparison (40 bits)
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Summary

* Limited technology at this time.
* Device noise, measurement error, etc.
* Hope for future advancements

* Many potential alternatives in numerous research,
this is only one of the approaches.
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Further Research

Mitigating Noise
Interpreting QFT Result

* Alternative Problem Statements

* Energy-Based Models
» Graph-Theoretic Approaches
* Quantum Machine Learning

Quantum RNA Folding
Motif Finding*

 Algorithms proposed in this project may be
more suitable for Motif finding problem.
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References

* See the full report for more details.
* Visit vt.in.th/quantum for further readings, files and this slide.

[=] 77 [m]

[=]:5

vt.in.th/quantum

* More on quantum computing: Qiskit and other reading.


https://vt.in.th/quantum
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